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Nonequilibrium phase transition in the case of correlated noises
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We consider the nonequilibrium phase transition in the case of correlated noises. A spatially extended model
driven by the correlated noises is studied. By the Weiss mean-field approximation, we find that the correlation
between the additive and multiplicative noises has an effect on the phase transition. The phase transition
possesses some similar characteristics to the one of Van den Broeck, Parrondo, and Toral [Phys. Rev. Lett. 73,
3395 (1994)]. In addition, we investigate the effect of the additive noise on the phase transition.
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Recently, the noise-induced phase transition has been in-
tensively investigated for a large number of systems [1-5].
In Ref. [2], GarciaOjalvo, Hernandez-Machado, and Sancho
have presented a spatially extended model, i.e., the Swift-
Hohenberg equation, and studied the influence of multiplica-
tive noise on the evolution of microscopic variables. Subse-
quently, Van den Broeck and collaborators proposed two
general spatially extended models that describe the effect of
multiplicative noise [4,5], and reported that the models can
undergo a nonequilibrium phase transition leading to a
symmetry-breaking state. In these systems, the noise plays
an important role. Noise-induced transitions can occur only
if a certain amount of randomness is present in the environ-
ment. Remarkably they amount to a symbiotic relationship of
order and randomness. The existence of noise-induced tran-
sitions clearly forces us to appraise the role of noise. As we
know, noise always has internal and external origins. So for a
system driven by noises, we should simultaneously consider
the additive noise (internal noise) and the multiplicative
noise (external noise). In the case of independent noises, the
stationary properties of the system are dominated by the mul-
tiplicative noise and the role of the additive one becomes
rather small. The authors of Refs. [6—8] have investigated
the effect of interference of additive noise and multiplicative
noise when these two kinds of noises are correlated. They
found that the transition between unimodal and bimodal sta-
tionary distribution (i.e., the transition between stationary
states of the system) is strongly influenced by the correlation
between both noises. So one can ask how the effect of the
correlation on nonequilibrium phase transitions will be. In
this paper, we shall study this problem.

We consider the lattice model with scalar variables, in
which the scalar variables x; are defined on lattice points i
(i=1,2,...,L% of a cubic lattice in d dimensions. The
Langevin equations (in dimensionless form) are

) D
H=S) T8 ()= 5520 (x=x)+ (). (1)

These stochastic differential equations are defined in the
sense of Stratonovich calculus. The sum over j runs over the
set of 2d nearest neighbors of site i. &,(r) and 7,(t) are
Gaussian white noises with zero mean values and the follow-
ing correlation functions:
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Since we use dimensionless variables x; and ¢, the constants
D, D, D', and \ are all dimensionless in Egs. (1) and (2).
Van den Broeck, Parrondo, and Toral [4] have reported the
case without the additive noise #,;(7). They mainly consid-
ered the nonequilibrium phase transition induced by multi-
plicative noise, and drew a conclusion that the transition pos-
sesses features similar to those observed at second order
equilibrium phase transitions and is found to be reentrant. In
addition, Van den Broeck et al. [5] also studied Eq. (1) for
the case when the correlation intensity of &;(¢) and #,(7) is
zero [ie., (&()7n;(t)))=0], with f(x)=x,—x; and
g(x;)=x;. They pointed out that the phase transition would
be shifted. We shall consider the effect of the correlation
between the multiplicative noise &;(¢) and the additive noise
7;(¢) on the phase transition. We can drop the subscript i in
the following since Eq. (1) is similar for every site i. So it
becomes

x=f(x)+g(x)&(t) =D (x—p)+n(t), 3)

where we have also introduced the Weiss mean-field ap-
proximation w=(x)=F(u), which have been extensively
applied [2—5,9-13]. In the following, we give a method (this
method is more simple than the one in Refs. [7,8]) by which
we can derive the Fokker-Planck equation (FPE) for a sto-
chastic equation when there is correlation between the two
noises (Gaussian white noises).
We consider the stochastic differential equation

x=h(x)+g1(x)&(1) +g2(x) n(1), )

in which noises §(¢) and 7(¢) are the same as those in Eq.
(3). Let 7mo(t)=n(t)—N\D'/D &(t). Obviously we get
from Eq. (2) that {7(2))=0, {779(¢) &(¢'))=0, and

(o) mo(1))=2D" (1 =N 8(1—1"). ®)

Then Eq. (4) can be transformed into the following form:
xX=h(x)+h(x)&(1) +g2(x) (1), (6)
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where h1(x)=g(x)+N\VD'/D;g,(x); now the noises &(r)
and 7,(¢) are no longer correlated.
It is easy to obtain the FPE of Eq. (6) as follows:
3, P(x,t)= =3 h(x)P(x,t)+ D dh(x)dhi(x)P(x,1)
+D"(1=N\?)d,85(x)9x82(x) P(x,1). (7)
Equation (7) accords with that obtained by the method of
Refs. [7,8].

In order to obtain the FPE for Eq. (3), we compare Eq. (4)
with Eq. (3) and get h(x)=f(x)—D(x—u), g(x)=g(x),

|
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and g,(x)=1. Substituting these relations into Eq. (7), we
obtain the FPE for Eq. (3):
3, P(x,t)=—3,[f(x) = D(x— )] P(x,1)
+D19,f1(x) 3 f1(x)P(x,1)
+D'(1-\?)3*P(x,1), (8)

where f1(x)=g(x)+N+yD’'/D;. Under the natural boundary
condition, the stationary solution of Eq. (8) is [14,15]

1
Py(x)= 5exp

where N is a normalization constant. In terms of the Weiss
mean-field approximation, we neglect the fluctuation in the
neighboring sites. From Eq. (9) we can get

oo

=) =F )= [ xpo)ax (10)

(the order parameter m=|u|). In Ref. [4], Van den Broeck,
Parrondo, and Toral predicted the existence of a symmetry-
breaking phase transition with breaking of ergodicity by the
Weiss mean-field approximation. As to the model studied in
our paper, if A#0, as long as f(x) is odd and g(x) even it
follows from Eq. (1) that any realization {x;()} is equally
probable as {—x;(¢)}, so the symmetry-breaking phase tran-
sition exists; if A=0, when g(x) is odd or even and f(x)
odd, the symmetry-breaking phase transition can happen as

in Ref. [4]. In order to illustrate the effect of the correlated -

noises on this phase transition, we give a possible example.
Let f(x)=—x(1+x%? and g(x)=1+x>. Substituting them
into Eq. (9) and carrying out the integration, we can obtain
the stationary probability density. We shall not present them
here on account of their lengthiness. ,
We now turn to a more detailed analysis of Eq. (10). It is
a self-consistent equation for u,D,D, and D’. Obviously,
the trivial solution w=0 always exists [for u=0, P,(x) is
symmetrical]. With the appearance of multiple solutions, we
can find ‘ ordered” phases with an order parameter
m=|(x)|#0 [the symmetry of Eq. (9) will be broken]. The
critical condition should be
F'(u=0)=1 for\?<1. (11)

For the above special example, from Eq. (11) we can get

f_w dxG(x) ci:xp[—H(x)]=Jm dxG(x)

Dx '
XeXp[~H(X)]~D—1H1(x)

(forx<1), (12)

where

fxd f(y)—Dg(y)g'(y)—D(y—um)—NVyDD'g'(y)
Y D'+2xyD,D'g(y)+ D15°(y)

; ©)
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with  C=(\2D,)yD'/D,,E=D—(1-2\*)D'/D,, A
=[(1-A%)D,D'1"?,  a=[2(2\D'/D,+D'/D,+1)"?
—2(1+\yD'/D)]?,  d=Q2NJD'/ID,+D’'/D;+1)"?,
h=1/2d, and g=h/a. Here the condition D, D' +#0 for the
validity of the Eq. (12) is necessary. In Fig. 1, we have plot-
ted the phase transition line in the D — D parameter plane in
the light of Eq. (12). For simplicity we set D'=1, and
A=0,0.5, and 0.9, respectively. From this figure, we can find
that the correlation between the additive noise and the mul-
tiplicative noise has influence on the phase transition. Firstly,
the correlation always advances the transition to larger val-
ues of the spatially coupling constant D, i.e., the phase tran-
sition lines move to higher spatially coupling constant D.
Secondly, along with the increase of A the scope of D, for
the transition when 0=<D <20 becomes more and more nar-
row. Thirdly, when N increases the transition line always
moves toward the left. When D is small this effect is feeble,
while when D is large it is strong. In addition, by analyzing
Fig. 1 we find that the symmetry-breaking phase transition
predicted by the Weiss mean-field approximation in our case
has some similar properties to the one in Ref. [4]: the or-
dered phase only appears for a sufficiently strong spatially
coupling constant D; the phase transition is reentrant.

Then let us compare the transition when A =0 with the
one in Ref. [4]. Because of the effect of the additive noises
the phase transition in our case will happen at a smaller value
of the multiplicative noise intensity and a larger value of the
spatially coupling constant than the one in Ref. [4]. The
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FIG. 1. The phase transition lines predicted by the mean-field
theory in the D vs D plane for several values of A. D'=1 is fixed
and A =0,0.5, and 0.9, respectively.

scope of the multiplicative noise intensity when 0<D <20
becomes more narrow (cf. Fig. 1 in Ref. [4] and Fig. 2 in our
paper). By further study and analysis we find that when the
intensity of the additive noise increases the scope of D for
the transition when 0=<D=20 is more and more narrow.
When D' —o0, the phase transition will disappear, which is
like the one in the case of additive noise (in this case, the
model does not undergo a phase transition). In Fig. 2 we
have plotted the phase transition lines when A=0 and
D'=1,2, and 3, respectively. Their positive nonzero solution
m=|({x)| of Eq. (10) for D=17 is represented in Fig. 3.
From Fig. 3 one finds that when the additive noise exists the
mean-field region and the region of the values for D; in
which the ordered phase is predicted are smaller (cf. the
dashed line in Fig. 2 of Ref. [4]); with increasing D’ the
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FIG. 2. The phase transition lines gotten by the mean-field
theory in the case of A =0 for several values of D'. D' =1, 2, and
3, respectively.
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FIG. 3. m vs D, for D=17, according to the mean-field theory.
A=0 is fixed and D' =1, 2, and 3.

value of m becomes smaller and smaller, in the limit
D' — it tends to zero. Thus we can conclude that with the
increase of D’ the transition will become more and more
indistinct, when D’ —oo the transition will disappear. More-
over in the limit D’ —0, the phase transition line of A=0
tends to the one in Ref. [4]. For the model (1), when one
does not consider the additive noise (i.e., without the fluc-
tuation of the internal conditions) it becomes the Langevin
equation (1) of Ref. [4]. Although the formula (12) and the
formula of u obtained by us are gotten under the condition
D' #0, in the limit D’ —0 they can tend to the correspond-
ing ones in Ref. [4].

The positive nonzero solution m=|u| is represented in
Fig. 4. The figure shows that the transition is the second
order one (which is similar to the one in Ref. [4]), since the
order parameter m increases continuously. Thus the transi-

0.7

06 / . .__

0S5

04

03

02 [

01

FIG. 4. m vs intensity of the multiplicative noise D for

D =17, according to the mean-field theory. A =0, 0.5, and 0.9.
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tion possesses the characteristic features: divergence of the
correlation length and susceptibility, critical slowing down,
and scaling behavior, etc. Moreover with the increase of A
the region for the order parameter m becomes smaller.

By analyzing the transitions for our model we find that so
long as the model has the multiplicative noise, it will un-
dergo a phase transition, which is reentrant. In the case of
additive noise the transition does not exist. So we say that
the multiplicative noise is the main role for the phase transi-
tion of the mean-field model (1).

In Ref. [5], Van den Broeck et al. have studied the case
for f(xi)zafx,«—x,3 and g(x;)=x; when the additive and

multiplicative noises exist simultaneously in the case of
A =0. For the lattice model in our case, g(x;) must be even.
If g(x;) is odd, =0 is not the solution of Eq. (10), and the
phase transition can not happen. Thus as for the model in
Ref. [5], when the correlations between the additive noises
and the multiplicative noises exist there would not be the
nonequilibrium phase transition.
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